PHYSICAL REVIEW E 70, 026221(2004)

Stabilizing the absolutely or convectively unstable homogeneous solutions
of reaction-convection-diffusion systems

Moshe Sheintuch and Yelena Smagina
Department of Chemical Engineering, Technion, Haifa, Israel 32000
(Received 29 December 2003; revised manuscript received 5 May 2004; published 31 August 2004

We study the problem of stabilization of a homogeneous solution in a two-variable reaction-convection-
diffusion one-dimensional system with oscillatory kinetics, in which moving or stationary patterns emerge in
the absence of control. We propose to use a formal spatially weighted feedback control to suppress patterns in
an absolutely or convectively unstable system and pinning control for a convectively unstable system. The
latter approach is very effective and may require only one actuator to adjust feed conditions. In the former
approach, the positive diagonal elements of the appropriate dynamics matrix are shifted to the left-hand part of
the complex plane to ensure line@symptotig stability of the system according to Gershgorin criterion.
Moreover, we construct a controller thawith many actuatopswill approach the global stability of the
solution, according to Liapunov’s direct method. We apply two alternative approaches to reveal the unstable
modes: an approximate one that is based on linear stability analysis of an unbounded system, and an exact one
that uses a traditional eigenstructure analysis of bounded systems. The number of required actuators increases
dramatically with system size and with the distance from the bifurcation point. The methodology is developed
for a system with learning cubic kinetics and is tested on a more realistic cross-flow reactor model.
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. INTRODUCTION Du,(0) = V[u(0) - ug], u,(L)=0. (1c)

Control of spatiotemporal patterns in distributed dynami-Here Le is the Lewis numbe¥, D are convective velocity
cal systems is currently attracting significant attention. Sevand diffusion coefficients. For most of this work, we employ
eral recent applications in reaction-diffusion and fluid dy-the following simple(oscillatory) polynomial kinetics
namics systems derived the methodology for control of a
desired spatiotemporal pattglii—6] and references thergin
Our group has derived control procedures for reactionwhile in Sec. VI, we employ a more realistic cross-flow re-
convection-diffusion(RCD) systems. Control of spatiotem- actor in which a first-order activated reaction occurs. We
poral patterns in a distributed dynamical system is significhoose a model that incorporates convection since the inter-
cantly more difficult than that of lumped models since it play between absolute instability, due to autocatalytic kinet-
requires multiple sensof®r continuous imaging or spatial ics, and convective instability, which can be induced by con-
filtering of profiles[7]) and multiple spatially dependent ac- vection [9,10, makes the control problem especially
tuators (see[8] for discussion or even a spatiotemporally interesting.
dependent actuator that can control traveling solutions. Dis- This model (and similar oneshas been employed for
tributed systems are described by an infinite-dimensional sehany years in simulating patterns in chemical systems. Most
of ordinary differential equationéODE’s) and we need to mechanisms employ an activator-inhibitor interaction with a
control the unstable modes without destabilizing othersufficiently wide difference of their diffusivei.e., D> 1),
(stablg modes. The instability of spatiotemporal patterns isconvective or capacityLe> 1) properties. Eq(la—(1d) ac-
typically characterized by a small number of unstable modesgounts for two variables: the main autocatalytic variaale-
and various approaches to that end were suggested. Thi@ator, x) which undergoes reaction, advection, and diffu-
number of unstable modes, associated with the homogeneogmn, and an inhibitofu) which may be advected by the flow.
solution, however, increases with system size and with thgvith V=0 and wherD is sufficiently large, this model forms
bifurcation parameter, and its stabilization is the subject othe extensively investigated Turing pattern-forming mecha-
the present article. nism[11,12. With Le>1, it forms the differential capacity

In the present article, we study the methodology for stapattern mechanism. Our group showed that stationary-
bilizing the homogeneougx=u=0) solution of the RCD  periodic or even-complegor -chaotic solutionscan emerge

f(x,u)=-x3+x+u, gxu)=-du-px, (1d)

one-dimensional system with oscillatory kinetics when the activator capacity is sufficiently largee> 1),
while both the inhibitor and activator flow at the same rate
Le X+ VX, = X, = f(x,u), u+Vu,—Du,,=g(x,u), [9]; the inhibitor diffusivity is not crucial for the establish-

(1a) ment of these patterns and it can be set to zBro0) and we
need to specify only the feed conditiong(). Other groups

subject to the Danckwert’s boundary conditions have focused on different convective termsxoénd u and
termed it the differential flow induced chemical instability
%0) =V[X(0) = Xg], X,(L)=0; (1b)  [13]. Patterns in RCD systems have been a subject of inves-
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tigation in the past decade; a unifying view of the variousone, which is based on analysis of unbounded systems, ap-
recently proposed versions of this mechanism is presented proximates the eigenfunctions from the wave numbers of the
[9,10. unbounded system, and is more suitable for arbitrarily large

This model with convection and el was employed by systems. The second approach accounts for the boundary
us as a learning model for a certain class of chemical reaconditions and we use the expansion in terms of eigenfunc-
tors, and specifically for modeling the cross-flow reactor intions of the linear operator of the partial differantial equa-
which the main reactaniu) is dispersed along the reactor, tions (PDES. These are analyzed in Secs. Il and Ill. We
rather than fed at one port as in traditional chemical reactorstudy the control design, using a truncatdderm spectral
[14]. The identity of the various variables is not crucial, but representation of the model, based on asymptotic stability
in order to build a reasonable control strategy, we need t@nalysis, using the Gershgorin theorem, as well as with a
consider the technological feasibility of the various controldesign based on Liapunov direct method.
schemes. In our interpretation, is the fluid temperature We study two pinning strategiesi) By controlling the
while u is the reactant concentration; other interpretationglesired solutiorix=0) at several set poin{g.e., pinning, the
that refer to the Belousov-Zhabotinski reaction were alsactual system size to be studied is that between two such
suggested. pins. The system stability is assured by placing mgmef-

To simplify the analysis to a single-variable presentationgerably equally distantpins. To determine these separations,
assume that is responding fasti.e., Le>1) and its balance we should search for the largest stable bounded system with
is assumed to be in steady state. For the €xs8, the origi-  Dirichlet boundary conditiongii) Controlling the feed con-
nal system(1) is reduced to one-variable integro-differential ditions tox(0)=0 andu(0)=0 should stabilize the homoge-
equation neous solution in a short systems in a domain of absolute
instability and in a long system in a domain of convective
instability: The perturbations in the system will be washed
out by the flow, if the velocity is sufficiently large. Within
the domain of absolute instability and in a long system, the
small perturbations of the feed conditions will be amplified.
This seems to be simplest control strategy in the convective
_ ) _ instability domain, if the system parameters are known ex-

X(0) =VIX(0) = xol; %(L)=0. (209 actly. The strategy of pinning control is analyzed in Secs. IV

While we have analyzed the control problem of fronts andand V. Pinning control, in the form of periodically spaced
patterns, in systems similar to E¢l), the control of the actuators that apply local perturbation, has been employed in
homogeneous state is a challenging problem since, upomany studies of differential and difference equatigasg.,
crossing the stability threshold of the system, self-organized\uerbach[15] studied this approach in difference equation
patterns of a certain characteristic wave number start téhat produce chaotic solutions in the absence of contfble
emerge and the number of such modes increases dramaticafigtual implementation of such control in reacting systems is
with changing the size of the system or with varying a bifur-technically quite difficult.
cation parameter. The stability threshold and these modes The methodology is developed for a system with learning
(wave numbers along with their group velocity, can be eas- cubic kinetics and is tested on a more realistic cross-flow
ily determined for an unbounded system. This can serve agactor model in Sec. VI. Specifically, we introduce a feed-
an asymptotic solution, but the behavior of a bounded systerhack control of feed conditions, for systems with certain un-
is different due to the boundary conditions. Specifically, wecertainty of the parameters.
showed[10] that system(1) with Le>1 andD=0, admits Problem statement.et us consider the control of the ho-
traveling wave solutions upon crossing the threshold of thenogeneous state of the reduced mo@l
unbounded system, but in a bounded system wjth0 there
may exist anothechighep threshold, which can be deter- 3
mined by linear analysis, so that stationary patterns emerge
sufficiently far from it. These result from the perturbations XA0) = VIX(0) = %], %(L)=0,
introduced by the boundary conditiofg, # 0). In the vicin-  [u(0)=0], where A\=\(z,t) is the control variable|x,| <1
ity of this threshold we may still find traveling solutions, but and constant. In the absence of control, there exists a homo-
their domain of stability cannot be determined analytically.geneous solutiorix;:=us=0 whenx,=0 or a solution that
We elaborate further on this structure later. approaches this value far from feed wheyp# 0). This state

RCD systems may exhibit absolutely unstable or convechecomes unstable within a domain\éfand moving or sta-
tiVG'y unstable states: The system is said to be COﬂVGCtiVG|M0nary waves emerge. We will consider stab”izing control
unstable when perturbations grow in a frame moving withaction that can be presented in the general form
the flow. The system is absolutely unstable when perturba-
tions grow in the physical frame. We propose to use formal
spatially-weighted feedback control to suppress patterns in
an absolutely or convectively unstable system and pinning
control for a convectively unstable system. We consider twavhereg is a gain coefficienty,(t) are independent manipu-
approaches for designing the feedback control laws. The firdated inputs, while/,(z) define the spatial distribution of the

Le X + VX, — X, = = X3+ X+ u(X), (28

u(x(z,t)) = u(0)e" @z - € e VEdy(o)de,  (2b)
0

Le X, + VX, — Xz;= =X+ X+ U(X) + \,

n
Mzt = -9 v (2, (4)
n=1
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control. We consider two feedback control approaches with 14
r,(2) that are either the exact or approximate eigenfunctions.
We also consider a strategy witli,(z)=48(z—z,) and v, 1.2
— oo, Which implies pinning the solution in some poirgdg

We realize that control of the form of E) may be too
restrictive, as the open system may acquire traveling waves
solutions. In that case, we may try to control the system 0.8
using an actuator that travels with the wave at the same ve- >
locity. We do not consider traveling wave control here for the 0.6
following reasonsii) traveling waves appear in unbounded
or ring-shaped systems, and their domain of existence in 0.4

bounded systems diminishes with decreasing the system size
[10], (ii) implementing such control is typically technically

difficult, and iii) the simple Eq(4) control is typically suf- 0.2
ficient as the control itself stabilizes the front.
o L L L L
Il. APPROXIMATE CONTROL FOR LONG SYSTEMS 0 02 04 06 08

k
In this section, we assume that the system lergtis

sufficiently large to approximate function,(z) by eigen- FIG. 1. A typical neutral curvgEq. (8) for PDE's (3) with X
functions of the unbounded system. In a bounded system, we? (L&=100,3=0.2,d=0.1667. Open circle denotes the threshold
use a discrete set of these functions that satisfies the bounglf-Stationary waveV,,k,), full circle denotes the threshold of sta-
ary conditions with certain phase shift. Once these eigen?ly (Vin.kn).

functions are approximated for specifiecand a bifurcation (=0) (Vy,k,). CrossingV,, in an unbounded system corre-
parameter(V), the control is applied to suppress unstableg, s to an excitation of waves traveling with a firkte

eigenfunctions in the form of and constant spedéd.g., Fig. 3a) before setting the contrpl
s The critical wave numbetk,) is determined fromdV/dk
A=-02, X(zt), 4(2))h(2),5, > 0, (5) =0: kX =1-a+\|a?-a, a=p/d, with a corresponding/?
=5 =(-Bd-d?9)/(9+9?), where 9=k -1, and group velocity
wherex=x-x, and{-,i«(2)) denotes space-averaged. of on/ky [EQ. (8)]. Note that the neutral curve possesses

We analyze first the bifurcation from the homogeneoué‘ninimum if >1 (5>d). In bounded systems, however, the

solutions(x., ug) that satisfyf(x) +Us=g(xs, u) = 0. Lineariz- boundary COﬂdIFIOhS may stgblllze the .frq(mte., to ensure

ing Eq.(3) with A\=0, we obtain an equation for the evolu- o=0) and cr035|ng/0:\y’(/3—d_ )/(1-d) will induce station-

tion of X ary waveswith a corresponding wave number kf=y1-d
L o [e.g., Fig. 8c), before setting the contrplNote thatV, (k)

Le X; + VX, — X,,= f, (X, U)X + U(X). (6)  exists ford<1. The type of sustained patterns depends an
the type of instabilityabsolute or convectiyewhich can be
determined analytically for unbounded system and numeri-
cally for a bounded onésee discussion and bifurcation dia-
gram in [10Q]). The domain of unstable wave numbers

o , of B k_<k<k, can be determined for any>V,,.
D(w,k,V) =Le(n+ ai) +ikV + k" - P d+ikv)’ Example 1 Figure 1 presents the neutral stability curve
s for system(3) with Le=100, 8=0.2, andd=0.1667. The
(7) corresponding critical wave numbers akg=0.525 (V,,
=0.245 andk,=0.9129(V,=0.45. ForV=0.3, for example,
the wave numbers limiting the instability in an unbounded
system ar&k_=0.3,k,=0.77 (Fig. D).
The simplest approach for control is to construct a regu-

Expandingx(z,t) as a superposition of harmonics and impos-
ing componenk,(z,t) of the formx,(z,t) =e“ek? with com-
plex w,=w=7n+oi yields the dispersion relation

The neutral curvg Rew=7%=0) is defined by the real and
imaginary parts of the equation above. Noting that
f 9X|xx, =1 (%=0), we find

-oleVk-VA&2+d(k?®-1)+B8=0, lator that stabilizes the unstable mode: Just abéw¥,,, the
threshold point for the appearance of waves with a finite
oLe d+dVk+VkKk:-1)=0, wave numbeik,, (and a wavelengti,=27/k;) we need a
o ) controllerA=\(z,t) with one actuator that is proportional to
defining the neutral curve in thé(k) plane as the unstable harmonic term with frequenky. Let us con-
,_ - pd- d2(k2 - 1) kV(d + K2 - 1) sider linearized PDHE6) with additive control
Ve T eke-ny 0 0T Led ® Le X + VX, - %, = X+ U(X) + \. (9)

Two critical points may be defined on the neutral curve:For a sufficiently large length, which is divisible by,
its minimum (V,,,k,,) and the point of zero wave velocity (L/T,,=p, integej, we approximate the deviatiotiz,t) by a
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series of cosine eigenfunctions, using the wave nunkier
that corresponds to the unstable mode in an unbounded sys-
tem. With the one unstable harmonic tesrc(t)cogk2)
the temporal factoc(t) is calculated via Fourier series(t)
=2(pT) 1fE™x(z,t)cogky2)dz Thus, the stabilizing control
at V=V,,, becomes\ =—gc(t)codk,z). The gain coefficieng
is roughly evaluated ag> ~—kfn+1 (see Appendix for de-
tails). This estimation is based on the approximate linearized
spectral representation of E®) subject to no-flux boundary
conditions.

For largerV>V,, the range of unstable wave numbers is
k_<ks<k,. In a finite-dimension system, only a discrete set 0 . . .
from this range corresponds to the unstable harmonics. Our 0 0.5 1 1.5 2

purpose is to find these frequencfessThe general approach v

lies in the approximation of the deviatiotz,t) in the inter- FIG. 2. The effect ol on the number of actuators required for
val [0,L] by spectral methods. To this end, we use the gencontrol (10) of a finite-sized system{L=36) [Eq. (1) (D=0, g
eral cosine Fourier series =1.0)); other parameters as in Fig].1

10+ -

Number of actuators

X(z,t) = >, cit)coskez + 69 A successful illustration of contrgll0), for stabilizing the
homogeneous solution for variodg is shown in Fig. 3:

. In these and subsequent simulations we use feed boundary
with wave numberskg and a phase shifé that satisfy the conditions Eq(2c) with x,=0.01 or 0.1. This deviation from
flux boundary conditions[x,(0)=Vx(0),x,(L)=0]. That steady state induces stationary or moving patterns in systems
yields of finite size. Let us note that for largéthis control does not

R R R assure a small steady state error of the spatial profilehe
ketankdl) =V, 6;=-kdlL. convective unstable domaifFig. 3(d)]. Recall that this ap-
proach is approximate.
The analysis of the above sum reveals certain wave numbers
kS that lie in the rangék_,k,]. These terms are stabilized for
a sufficiently large gailg by controller(5) with the series of Ill. CONTROL BASED ON EIGENSTRUCTURE ANALYSIS

| space-dependent actuatat@(z):cos(k; 6y and the re- (SHORT SYSTEMS)

lated global-weighted sensof&(z,t), ¢, given by In this section, we derive the control law based on the
traditional eigenstructure analysis. The method is best suited

2 ~ ~ to system wheré andT,, are comparable and the influence
- _ m
A= ggl {X(z,t),cogksz+ 6))codkz + 6, > 0. of boundary conditions is significant.

To find the eigenfunctions, we use the spectral method to

(10 expand X(z,t) =x-x,=2;a(t)¢;(2), where the orthonormal
Since k. decreases and, increases with increasingy basis functionsp;(z) are the eigenfunctions ef the'problem:
(Fig. 1), then the number of terms in suf0) grows withV  Pizz~Veiz=~Hi¢ir @2lz=0=Velr=0, ¢,l-1=0. Using this spec-
(Fig. 2. Obviously, the number of unstable mod&sgrows tral method, we convert Eq9) with A(t) from (4) into a set
with increasing length. for assignedv. of linear ODE’s

For system lengths that are divisible by wavelength 7
(L=pT,) and whenV is in the vicinity V,, (the phase shiftis | ¢ aj= (- pj+ La + > 9 — 9> bjoa®), j=1,2,...
0s=0) we can simplify control (10) as follows: i n=1

A=—gZ3 <_zt ),cogkz))cogkz), where the points 11

ke= Skn/pC[K k], s>0 (see the Appendix for derivation (see Appendix for derivation Rewriting (11) in the usual
whenp=1). ) _ vector-matrix form, we obtain

Example 2 For the set of parameters described in

Example 1 andL=36, we can find Tn=2m/ky=12, Lea=(-A+1+Q)a+Bu, (12

p=L/Tn=3 and the set of wave numberks; =0.175, Where a=a(t)=[a] is an infinite-dimensional vector
k2 0.35, k3 0.525, k4—0 7, k5 0.875,.. . Forv=0.3, we (j= ..), v is n vector, the matrixB=[b;,] has infinite-

find usmg Fig. 1 thatc_=0.3, k+ 077 Thus three wave dlmenS|onaI columns, and A=diaguq, s, ...),

numbers,k,=0.35, k3=0.525, k,=0.7, are enough for the |=diagl,1,..), Q=[g;], j,i=1,2,... are infinite-

above control. In the general cagee., L/ T, is not an inte- dimensional matrices.
gen we need to calculate the control according to the general In the absence of contr@ =0), the linear behavior of the
Eq. (10). homogeneous solution is described by the leading eigenval-
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0f~—"" ]
(e)-1
1 FIG. 3. Testing controlle(10) by numerical
0 simulation of Eq.(1): The figure presents gray-
(f) -1 scale plots in thdt,z) plane of the response to a

constant perturbation at the boundary conditions
(b)0 36 1 (X,=0.01; parameters as in Fig).2a) V=0.3,

\/\/\/ controller(10) is turned on at=250 changing the

traveling wave solutiorjthe profile is presented

in (e)] into a stable homogeneous solutifthe
profile in (f)]. (b) Same withV=0.5; (c) Same
with V=0.8: the uncontrolled system exhibits sta-
tionary wavegg); (d) Same withv=1.7 [the final
profile in (h)].

0 36 0 36
—> Z

(c) (d)

ues of matrix(12), which are typically situated in the right For control design, we use the approach of Gershgorin
hand side of the complex plane for soMe<V <V, where  stability criterion to ensure that the truncated mathixis

V’i denotes the stability thresho{d/hich may be either con- diagonally dominant with negative diagonal elemef6].
vective or absolute while V; separates domains of absolute Because of the dissipative nature of parabolic PDE’s, only
and convective instabilities for bounded system. For exseveraIm<N first rows of the matrixA do not satisfy this
ample, V;=0.26, V,=1.88 for the system described by the stability criterion. Thus, the contrfob =-gl,, Ha, m<N with
parameters Le=100,=36, 8=0.2, d=0.1667" The value a sufficiently large gaiy shifts the firstm diagonal elements
V,— V,ps @S L— where Vs is the absolute instability a; of A to the left part of the complex plane, so that the
threshold for unbounded PDE, D=0), (V4s=1.9 was following inequalities hold:aﬁ<—2}\‘:1’j¢i|aij|, i=1,...m
determined analytically ifil0] for the transition from abso- As a result, the truncated matri& (and hence the whole
lute to convective instability for Le=100,8=0.2, d infinite-dimensional matriXd) becomes stable.

=0.1667%. This control is formed in the original systef&q. (1), D
The feedback control may be presented in terms of Eg=0] by
(12) as
m
b = Kw = KHa, 13 Nzt =- gEl (X en(2). (14)

where then vector w=Ha is the measured output @¢l2)
with the matrix H=[h,] (n=1,2,...7;j=1,2,..). We Approaching global stability
need to find they X » matrix K of gain coefficients such that
closed-loop systemil2) and(13) be asymptotically stable.
For designing the finite-dimensional contid3) we use
an N-terms truncatedfinite- dimensiongl approximation of
the dynamic matrbA=(-A+1+Q)/Le. The truncation order
N is estimated from the convergence of the leading eigenva lobal stabilit thod
ues of matrixA. Furthermore, the actuator functiorg(z) in global stabil ﬁme IO' : f _ _
control(4) will be set to emulate eigenfunctions of the linear . we StUdY the so utlorx(z_,t) ° E_qs.(Z), [u(O)—Q, %=0]
operator of PDE(9) [¢4(2)=e.(2)] and the inputsp,(t) in some neighborhood of,=0. Using the expansior(z,t)

=(x(z,1), ¢y correspond to the spatially weighted-averagezzi:la"(t)"pi(z)’ whereg;(2) are eigenfunctions of linear op-
a - . . : erator(2a), we obtain the spectral representation of nonlinear
control, whereg, are the adjoint eigenfunctions of linear

Control (14) ensures local stability of the homogeneous
solutionx=0 of the nonlinear system via Lyapunov’s linear-
ization method. Let us demonstrate that such control, with
recalculated gain coefficierd, ensures simultaneously the
I<§1symptotic stability of this solution according Lyapunov’s

operator of(9). The structure of matriceB andH is then Eq. (23 as

simplified toB"=H=[1,,0]. Hence, despite the fact that the _

finite-dimensional control13) with »=<N influences only Le a(t) = — pay(t) + 2 g;iai(t) + f;(a) =Fj(@),

the first diagonaN X N block of the matrixA, this control '

ensures stability of whole infinite-dimensional system for a (15

sufficiently large truncation orde.

- %Such control is known as diagonal cont(dlecentralized feed-
YFor all calculations we use truncated system. back control [17].
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i=1,2,...,

where a=[a;(t)] is the infinite-dimensional vector(]
=1,2,..), while 4; and g; were defined earliefsee Eq.
(11)]. The nonlinear function§(a) are calculated as follows:

L
fj(a):fo (- x3+x)|x=2iai(t)¢i<z)gof‘(z)dz, i=1,2,....

(16)

For stability analysis, we use awterms truncated approxi-
mation of Eq.(15), which is rewritten in the usual vector-
matrix form as follows:

Lea,=(-A+Qa+f(a)=F(a), (17)

where a,f(a),F(a) are N-vectors,Q=[q;] is NXN matrix
and A=diag w, Mo, ..., un). Let us calculate theN XN
Jacobian matri¥, for Eq. (17) in a certain neighborhoof
of a=0 [the steady state solution @f7)] defined by in-
equalities|a;| < 8, §>0, as

1 9F

=— =(-A+Q+Iy+G)/Le.
Lo aly., ARG

(18)
In (18), the NXN matrix G=[G;] has elementsG;
==3[5(ZN18n0n) 2¢i¢7d2 o < 5 Which are bounded in the re-
gion Q). Matrix (18) is used for checking asymptotic stability

PHYSICAL REVIEW E 70, 026221(2004)

—diaggl,,0)a that has the Jacobian matrix (?fa:Fa
-Le™* diaggl,, O). Our purpose is to evaluate the gain co-

efficientg so that the matri¥,+ F; be negative definite one.
Matrix F, (18) presents the sum of the dynamics matix
=(-A+1+Q)/Le of ODE’s(12) and matrixG/Le. Thus, the
problem is transformed to the problem of finding the
gain coefficient g, which ensures negative definiteness
to the NXN matrix (A+G/Le)+(A+G/Le)T
-2 Le't diaggl,,, 0).* Such gaing is defined as
g = min{g,gc}, (20)
whereg, g ensure the inequalities; —g, <-=\, ,_ilf;], f;
—gc<—EJ-N:1’j¢i|fji|, i=1,...m, wheref; are elements of the
matrix F,=A+G/Le. Since the elements of the matfsx are
small bounded values in the regiéh then the above con-
ditions may be satisfied by a sufficiently large gagpsd..
Thus, according to Krasovskii's theorem, the appropriate
Lyapunov’'s function of closed-loop system id(a)
=FT(a)F(a)>0.

Remark 1The region( in the neighborhood of the equi-
librium pointa=0 where the matrid,+F} is negative defi-
nite defines the domain of attraction of the stable homoge-
neous solution. The number of terrim) and the value of
gain coefficient(g) in control (14) affects the size of the

of the autonomous nonlinear system based on Krasovskii'§omain of attraction of the closed-loop system: this domain

theorem[18]: the steady-state solution at the origin of non-

linear system(17) with F(0)=0 is asymptotically stable, ac-
cording to the direct Lyapunov's method, if the matfx
+F; is negative definittwithin some neighborhoofl (see
also contraction analys[4.9,2Q for nonlinear systemsThe
Lyapunov function for this system i¥a)=F"(a)F(a).

Let us formulate the conditions that guarantee the neg

tive definiteness of the matrig,+F..
Assertion 11f the matrix F,=[f;;] is a diagonal dominant

matrix with negative diagonal elements satisfying the in-

equalities
N N
fii<_ E |f”| and fii<_ 2 |fJ||, i:1, oN;
j=1#i j=1j#i

(19

then the matrixF,+F] is a negative definite matrix.

Proof. If the matrix F, has the above property, then the

symmetric matrixF,+ Fl is a stable matrix according to the
Gershgorin theorem stability criteri@1]. Hence, it is the
negative definite matrix.

a

expands with increasingy andg.

To demonstrate these results, we apply control strategy
(14) to system(l) with L=10 (D=0,8=0.45d=0.2) and
various V. The homogeneous solution of such a system is
unstable for 0.8V =1.5. Analysis of the dynamics matrix
of ODE’s (12) reveals that the first three rows do not satisfy
the Gershgorirstability criterion for V in the above range.
Analysis of the diagonal elements of the dynamics mairix
shows that contro(14) with m=2, g=0.48 is sufficient to
stabilize the small deviations of the homogeneous solution
for V=0.8. Here,¢(2) ~e*¥7 coq0,2)+0.5V sin(c,2)/ o7],
¢f(2=¢(20€7% i=1,2, andoy,05(a; #0) are the smallest
roots of taIGO'iL):VO'i/(O'iZ—O.ZB\/Z). The number of terms in
control (14) grows with increasing system lengteg., m=5
for L=20,V=0.8, other parametef3=0, 8=0.45,d=0.2).
Control (14) effectively suppresses patterns in absolutely or
in convectively unstable domairiEig. 4).

The number of terms in contrgl4) depends on the num-
ber of positive eigenvalues of matrig?2). That number
passes through a maximum with growingin the range
[V1,V,], where V] (the stability threshold and V., (the

Therefore, we need to modify the diagonal elements oftbsolute-convective threshold for bounded systesere de-
the matrixF, to satisfy the conditions of Assertion 1 for the fined before(e.g., for L=20, Le=100,D=0, g=0.45, d

matrix F,+F_. Let us introduce control(z,t) (14) into non-
linear PDE’s(2a). After lumping and truncating, we obtain
the closed-loop nonlinear ODE’s: la=(-A+Q)a+f(a)

A necessary and sufficient condition for a symmetric matrix to be

=0.2, we findV;=0.8,V,=1.5, and the maximal number of

terms occurs aV=1.2). For V>V, matrix (12) has only
negative eigenvalues and control is not required for
asymptotic stability. However, the constant perturbation im-
posed at the boundafgondition (2c), with x,=0.01 in our

negative definite is that its odd order principal minors are negative______
and even order ones are positive or, equivalently, that all its eigen- “mis an upper bound on the number of first ro@slumng of A

values be strictly negative.

that do not satisfy the Gershgorin stablility criterion.
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(a) Jg (b)ﬂ
0 20 0 20

[Fig. Xb)]. However, the former control ensures a smaller
steady-state error.

IV. PINNING CONTROL

By pinning control, we imply control that influences the
state variable at a finite number of discrete pomt[0,L].
To test it, we sek(z,t)=x,z), wherex, is the homogeneous
solution. We need to determine the spacing between pinning
positions required to assure stability of the system. Consider

t a control that pins the homogeneoxs0 solution at two
pointsz; andz,, so that
X(z)) =0, x(z)=0. (21)

The ability of this controller to stabilize the system can be
checked now by replacing the original probl€8) with the

0 20 following three problems:

0 —> ¢z

Le X+ VX~ X;;= =X+ X+ UX),  X|=0=VXz0, X =0,
FIG. 4. Testing controllef14) by numerical simulation of Eq. (223)

(1) [ D=0, Le=100,8=0.45,d=0.2, L=20]: The figure presents

gray-scale plots in thét,z) plane of the response to constant per- _ .3 _ _

turbation at the boundary conditior(s) V=0.8,x,=0.01, controller Le X+ Vi, = Xz = =X+ X+ U(X), X‘Zl =0, X‘Zz s

(14) is turned on at=250, changing the traveling wave solution, (22b)

into a stable homogeneous solutigh) Same withvV=0.8,x,=0.1.

¢) Same withV=2.1,x,=0.01.

© W %o Le X+ VX = X;;= =X+ X+ U(X), X;,=0, X =0,

casé induces stationary patterns in the system because in (220

this range(convective instability the stationary wave solu- .

tion has a large attraction domain. Recall also that we searchat des dc_nbe the sys(’;em neahr the Iheftbbour&dary, between }WO

for a control that will assure a sufficiently wide domain of 'Ntérmediate pins and near the right boundary, respectively.

stability. Consequently, we find that the number of terms in Linearizgtion _of(22@—(220) aroundx=0 and approxima-
- tion of the linearized system by spectral methods leads to the
control does not decrease fdr>V.

) ! following linear systems in the three domains
The above control is effective only for short systems. For g 4

the case studied in Fig. 5, the weighted global conttdl) Lea=Aa, Aj=(-u;+1)5; +<U((pi),(p]-a ihj=1,2,...,
requires six actuators/sens@kg. 5a)], compared with ap-

proximate controller(10), which requires three actuators (23)
where ;=1 wheni=j and §;=0 otherwise, ande(2)

o X 107 10X 107 [#(2)] are the eigenfunction@djoint eigenfunctionsof the
o . linear operatol22) subject to corresponding boundary con-
3 :ll\]\,r ———————— s p ditions (Egs. (228—(220), while u; are the related eigenval-
S m [ ues. For these domairi22a—(22¢) these are, respectively,
= M !

T s of w =0’ +0.25/2,
x
b
-10 -5 \V
0 t 000 t 400 ¢i(2) = 0;e°%7 codoi2) + ——sin(ei2) |, (244

0.1 0.1 20,
Y A [ A
= ZUj:—Vtar(szl),
@ 0 , % o) 0 z 3

wi = (jm2 (2o~ 2)* + V214,
FIG. 5. Comparisons of controller design by exésigenstruc-

ture analysis, Eq(14)) method[(a) m=6, 0'1_=0.063,0'?=0.206, ¢i(2) = @iewz—zl)/z siflim(z-z)l(z,-2))],  (24b)
03=0.286,0,=0.368,05=0.452,04=0.537 with approximate de-

sign [(b), controller (10) with 3 actuators:RZ:OAS R3:0.536 ]A<4

_ 2 2
=0.62. The figure presents the temporal response=di.4L,0.6_ M=oyt 0.25/%,
(upper rowy and the stabilized spatial profilssecond row (V
=0.27,L=36, other parameters as in Fig.x,=0.01). ¢i(2) = 0,*¥sin(o2) - tan(oiz,)cod2)], (240
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1.8

1.5

1.2

>
0.8

056 ® (0)° ® ()P 38

@ .,

03 = FIG. 7. Testing of pinning boundary contri&q. (1), D=0] in a

short system(L=6) with V=0.3 () andV=1.7 (b) and in a long
system(L=36,V=2.1) (c). Other parameters as in Fig. 1; The figure
presents gray-scale plots in tkiez) plane of the response to con-
stant perturbation at the boundary conditiqrg=0.01), and pin-
ning control[i.e., x(0)=0] is turned on at=250.

OO 25 5 75 10 125 15 175 20
distance of pins

FIG. 6. Analysis of stability domains of pinning control: Figure
shows the effect 0¥/ on pin separation on the left;, dashed ling
middle (z,-z, solid line), and right(L —z,, dashed-dotted linedo-
mains. The stability was determined from E¢(&3) (parameters are
as in Fig. 2.

the homogeneous solution in a short system, while in a do-
main of convective instabilityV=2.1) this control is effec-
tive for a system of any sizg-igs. 1b) and 1c)].

20'j ==V tar{O'J(L - Zz)].
In (24), O0;=(¢;, 9?95 {The eigenfunctions for cas@4a)
were derived if22]}.

For boundary condition22b), we find the exact expres-
sion for(u(¢), ¢) as

VI. APPLICATION TO THE CROSS-FLOW REACTOR

We try to apply the methodology above to control a ho-
mogeneous solution of the homogeneous model of a cross-
flow reactor in which the feed is evenly distributed along the

28 ij reactor(e.g., through a membranand the reactor is evenly
<U(q>i),(pja>: -— — — —+ 97, cooled (see[23] for a detailed description By a homoge-
VL(VZ +i277L%) | LAV2 + 27212 neous model, we imply that interphase gradients of tempera-
(25)  ture and concentration are absent. The model for a first-order
B B . Arrhenius kinetics,r=Age"®RTC,, with mass supply and
where L=2z,-z, V=d/V+V/2, 9=0.5vL for i=j, ¢ heat removal along the reactor is written below in dimen-

=2i?/(j2-i%) for i #j (oddi+j), 9=0 fori#j (eveni+j).

sionless form using conventional notation for variables and

(263

(26b

V. PINNING BOUNDARY CONDITIONS

y§|§=0 = PE{Y|§:O = Yinl; y§| el 0; X|§:0 = Xin-

Linear stability analysis of Eq23), using eigenstructure parameters

for variousV (Fig. 6): All these separations tends to infinity

system of any length in a domain of convective instability PY

state variable at certain points, which is typically technologi-

local stability for small perturbations of initial or boundary wherex andy, respectively, are dimensionless concentration
ture, respectively) is the control action. We assume negli-
Danckwert’'s boundary conditions are typically imposed on

systems. Consider a special type of pinning control in which

(260
right-boundary analysis abo&q. (22¢), z,=0] and linear In the absence of control, the right-hand side of E2f)

(24), enables us to calculate the maximal pin separatipfis P
L-2z,. andz,-z;) that assure a homogeneous stable solution Le_y + YT B Da(1-x)6(y) + Br(Y-y) +\
at V,,V, (the stability and absolute-convective instability = F,00y) + A
thresholds Thus, a single pin is sufficient for stabilizing ’ ’
(V=>V)). —= 4= = DAl X)) + Be(X %) = Fo(xy),
Let us note that pinning control requires control of the Jr 9§
- ; W
cally difficult. Moreover, unlike the feedback controllers H(Y):eXF<T>,
considered abovéSecs. Il and I}, pinning control ensures Yty
conditions. However, pinning control may require fewerand temperature, Pe and Da are Peclet and Damkohler num-
terms than control based on spectral representation. bers, whileX andY denote wall concentration and tempera-
gible dispersion of mass and typically the bed heat capacity
is large (Le>1) and conductivity is small, Pel. The
The results of previous section suggest that pinning at thr@n )
oI . e model:
feed boundary may be most effective in convective-unstable
we control the feed conditions to obey0)=0 at all times.
With this control, the original problem is replaced by the
stability analysis(Fig. 6) and simulationgFig. 7@)] verify  [f1(Xs,Ys) =f2(Xs,¥s) =0] may admit a unique or multiple so-
that in a domain of absolute instability, this control stabilizeslutions for a certain range of wall transport parametggs
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T
A T
3.8
(a2)
RVAVAVAVAYS
(a) > &, 34
6
3.6 (a3)
4
(b) 3.5 FIG. 9. Testing of pinning boundary control with uncertainty of
36 parameters by settingn:L‘lf'ay(g,r)dr, Xin=Xs=0.872 44 in sys-
; tem (26) of length L=5.4 and Pe=1%a) and Pe=25b); other
parameters as in Fig. 8. Pinning control is turned ort=s250,
355t changing the stationary pattern soluti@ into a stable homoge-
T neous one for Pe=15 or into moving wavgy for Pe=25. For
t<250, y;,=3.5 (compared withy;=3.5334. Figures(al,b) pre-
(c) 3.5 sents gray-scale plots whil@2,b2 and(a3,b3 present spatial pro-
files before and after control.
3.6
The simplest approach to control is to capitalize on the
355) convective instability by pinning the boundary at the value of
’ the homogeneous solutig®ec. V. In the general case the
homogeneous solution is not known exactly, and the solution
3-50 54 is very sensitive to this value. We can estimate it from inte-
(d) S ' grating the variablex andy over a certain domain in the

reactor(¢ <é&<L), as

FIG. 8. (Color onling Simulation and control of the cross-flow L L . L
reactor of lengthL=5.4 [Eq. (26), Le=100, Pe=15B=16.2, B _ . _
-4, p=1, Da=0.2,X=0, Y=0, y=1¢"]. (a) Response of the  Yin(D= L—g*f Y(EDAE Xin(H) = L—g*f (&, Ddé.
closed-loop system with contr¢l0) to constant small perturbation ¢ ¢
at the boundary conditionéy;,=3.53, x;,=0.872 compared with (27)
steady-state solutiogs=3.5334,%x,=0.8724. The figure presents
gray-scale plots in thér, £) plane. Controlle(10) using four actua-

tors is turned on at=250, changing the uncontrolled stationary ' le of th | h of th luti h d
wave solution(b) into a homogeneous solutigo). Pinning the inlet tiple of the wavelength of the solution. We have attempte

conditionsy;, = ys=3.533 %, =xs assures the homogeneous solution thiS @approach numericalliFig. 9) and it worked well with
exactly (d). Xin=Xs and for small deviations from the critical poifite
=15, Fig. 98], but with larger deviationfPe =25, Fig. &)]

and Br. We limit this analysis to the case of a unique un-it converted the stationary patterns into moving waves. This
stable solution that leads to stationary or moving patternsmay be due to residual error of integrating a fractional num-
The neutral curve that describes the Stabl'lty boundary re'aber of Wave]engths and can be corrected by integration in
tion between P) and wave numbe(k) was derived if23],  time as well. A formal analysis of the stability of this ap-
and we use here the analysis and results presented there. proach will be conducted elsewhere.

For the case simulated in Fig. 8, the homogeneous steady- \we test now the traditional space-dependent actuator. To
state value ig/s=3.5334,x,=0.8724. The system is CONVeC- chnose the methodology of control, we approximate the
tively unstablef23] and fixingyi, = ys=3.533,%,=Xs SSUr€S - aqant problem in the form similar to E€R). For Les>1,

a homogeneous solutiofFig. 8d)]. Small perturbations ; L
from these values lead to stationary patteffag). &b), the we can ignorei¢/ g7 terms. Defining

Obviously,yi, — Vs (similarly for x) for small amplitude spa-
tially harmonic patterns and whdn-¢" is an integer mul-

uncontrolled cage We attempt to apply control in that case. b==(Y-y)-B(X~-X),
As we show, control can be useful for small deviations but
will not be useful for large ones. we find from Eqs(26) the ODE

026221-9
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d’f + BC¢ == Pe_lygg - (Bc - IBT)(y -Y)

with  feed condition ¢(0)=¢|x=o=Y-y(0)-B[X-x(0)],

wherey(0) =y| o, X(0) =X|z=0=Xi. After some rearrangement

(similar to one used itji24]), we obtain the following non-
linear PDE with respect ty, as

y, oy 17y

Lo T T Pegg - T U - Dav(Hay),
(282
F(y) =DaB(1+X) = (1 +B)(Y +y)]6y) = B(y - Y),
B=pBr~ Bc, (28b)

13
u(y) =-Da 0(y)/3{ f e fydp - y} , (280

(o]

(€)= e Y - y(0) + B[x(0) - X} + [y(0) - BYIe'™.
(280

We can approximately convert E8) to the model studied
here if we setW(£)=0, either becaus&(0)=0, y(0)=0
and/or since the effect of initial conditions decaye&g> 1),
and approximate the exponential term(y)=exdyy/(1
+vy)] as (1+by?). The structure of Eq(284) is similar to
that_of Eq.(2) after replacing the space coordinate by
=¢/Pe. Thus, we may use the control actioa\ (¢, 7) of the

PHYSICAL REVIEW E 70, 026221(2004

VII. CONCLUDING REMARKS

We study the problem of stabilization of a homogeneous
solution in two-variable reaction-convection-diffusion sys-
tem with oscillatory kinetics. We choose a model that incor-
porates convection since the interplay between absolute in-
stability due to autocatalytic kinetics and convective stability,
that can be induced by convection, makes the control prob-
lem especially interesting. While spatially weighted feedback
control can suppress patterns in absolutely or convectively
unstable systems, the number of required actuators increases
dramatically with system size and with the distance from
bifurcation point. Patterns can also be suppressed by pinning
the desired solution at several set points of the actual system
size. A control based on pinning of the boundary condition is
most simple and effective in convectively unstable systems,
if the system parameters are known exactly. For systems with
a certain uncertainty of the parameters, we introduce a feed-
back control of feed conditions. Implementation of these ap-
proaches in a more realistic model of a cross-flow reactor
highlights the difficulties associated with controlling the ho-
mogeneous system in distributed systems.

While we have considered here only boundary conditions
that are constant in time, we should be aware that this is a
particular case of the problem with time-dependent periodic
or noisy boundary condition. That may introduce families of
traveling wave solutions, which may interact to form spa-
tially and periodically chaotic solutions. This issue will be
addressed in future presentations.

general form(4) for stabilization of the small deviations
from the homogeneous staye of Eq. (26).

We now apply the methodology of Sec. Il to demonstrate
reasonable results for control of short system with small per-
turbations of feed conditions from the homogeneous soluf
tion. Here, contro(10) is constructed using the wave num-
bersks (and phase shiftg,) that satisfy the flux boundary
conditions and lie in the domain of unstable wave numbers.
That domain for a bounded systg®6), [k_,k, ], may differ
from that calculated from neutral curve for unbounded sys-
tem (26), [k_,k,]. For example, for the set of parameters in
Fig. 8, we calculated from the neutral cur{feig. 1(a), [23]}
the following critical points: k,,=6.68 (Pg,=14.976, k,
=5.93 (Pe,=15.42; for Pe=15, the wave numbeks=6.4,
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APPENDIX

1. Derivation of control at V=V,

For simplification, we consider the case=T, Let us
expandx(z,t) on interval[0,L] in cosine Fourier series

X(zt) = 0.5/ cy(hen(2), (A1)
n=1

k,=6.95 limit the instability domain in an unbounded sys-ynere 901:1/\5'Tm and gon(z):\s’T'l'mcos{Zw(n—l)z/Tm] n

tem. Following the approach in Sec. Il, we should use two_, 3

. .Members of the series above are orthonormal in

actuator/sensors with wave numbers 6.61 and 6.93 that eMfye interval[0,L] and we approximate the linearized system
ploy eigenfunctions that are within this unstable domain. Nu—(g) with \=0 by a set of ODE's

merical simulations of E(26) revealed that this may not be
sufficient. We added two actuators with adjacent wave num-
bers (5.46,6.03 and found that control10) with four

actuator/sensorgk; =5.46, k,=6.03, k;=6.61, k;,=6.93 is
sufficient for stabilization of the homogeneous solution of
system of length.=5.4 (Fig. 8).

This analysis suggest that the approaches presented here
are very limited in their applications for real systems. We
should empahsize again that control of convectively unstable
systems is different than that traditionally applied to
distributed-parameters systems and should capitalize on pin-
ning the feed conditions.

026221-10

where

©

Le ¢, =¢,— (BIV)Y aui6i, (A2)
i=1
Le Gy ={-[(n = Dkpl? + L}c, + VX puici
i=1
-(B\V)X, g, N=2,3, ..., (A3)
i=1

elementsy, =(u(X), en(2)) and p,i=(Vx,, ¢n(2)) are
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calcuIEted by integrating the term(x) [Eq. (2b), u(0)=0] 2. Derivation of Eq. (11)
ar}deZ with v_vgight f_unctions. By exact integration, we ob-  Substitutingx(z,t)s==;a(t)¢;(z) with A(t) from (4) and
tain the coefficients in EqA2) as integrating with a weight eigenfunctions’(z) we convert

Eq. (9) into a set of linear ODE’s

Q=66 IL - (0IL - 1)], 6= 2V/d, . L7
Lea=(-pj+Da+ 2 qa=-9g| 2 vn@4i(2dz
i 0 n=1

4 e—ua ) (A5)
Oii=—— > > | 1=2,4,..., q;;=0, a .
LL(dV)*+ (i = 1)k, where u;=07+0.252, ¢(2), and ¢{(2) are eigenvalues,
i=35 . (A4) eigenfunctions, and adjoint eigenfunctions of linear operator

(3) with flux boundary conditions, ane;>0,i=1,2,...sat-
isfy the transcendental equatiGee[22] for concrete formu-
which forl'_>1 becomes|;;=6, q;;=0,i>1. Thus., the vari-  las), qji:<u(¢>i)¢>ia), where u(¢;) satisfies Eq.(2b) with x
able c,(t) is stable for anyv and <d, d<<1. This is also  =¢, andu(0)=0. Let us evaluate the last term(A5). Since
evident from the neutral curve. Lo ” .
Stability analysis of the structure of Eq@3) with pa- a _ f a
rameters Le=1003=0.2, d=0.1667(andk,,=0.525 shows . E”"(t)‘””(z)d’l (2)dz E””(t) | @92z
that the variables,(t)(n>2) are stable for any/, while the )
variablec,(t) is unstable fo>V,,. Sinceg,(2) ~cogk,z), then denoting

then the system may be stabilized by the control of the sim- L

plest form A=-g(x,cogk.z))cogk.z), with a sufficiently bj, = J In(2)#(2)dz, (AB)
large gaing. A rough estimate of gailfng>—k,2n+ 1) follows 0

from Eq.(A3) (n=2). we can finally rewritg(A5) as Eq.(11).
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