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We study the problem of stabilization of a homogeneous solution in a two-variable reaction-convection-
diffusion one-dimensional system with oscillatory kinetics, in which moving or stationary patterns emerge in
the absence of control. We propose to use a formal spatially weighted feedback control to suppress patterns in
an absolutely or convectively unstable system and pinning control for a convectively unstable system. The
latter approach is very effective and may require only one actuator to adjust feed conditions. In the former
approach, the positive diagonal elements of the appropriate dynamics matrix are shifted to the left-hand part of
the complex plane to ensure linear(asymptotic) stability of the system according to Gershgorin criterion.
Moreover, we construct a controller that(with many actuators) will approach the global stability of the
solution, according to Liapunov’s direct method. We apply two alternative approaches to reveal the unstable
modes: an approximate one that is based on linear stability analysis of an unbounded system, and an exact one
that uses a traditional eigenstructure analysis of bounded systems. The number of required actuators increases
dramatically with system size and with the distance from the bifurcation point. The methodology is developed
for a system with learning cubic kinetics and is tested on a more realistic cross-flow reactor model.
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I. INTRODUCTION

Control of spatiotemporal patterns in distributed dynami-
cal systems is currently attracting significant attention. Sev-
eral recent applications in reaction-diffusion and fluid dy-
namics systems derived the methodology for control of a
desired spatiotemporal pattern([1–6] and references therein).
Our group has derived control procedures for reaction-
convection-diffusion(RCD) systems. Control of spatiotem-
poral patterns in a distributed dynamical system is signifi-
cantly more difficult than that of lumped models since it
requires multiple sensors(or continuous imaging or spatial
filtering of profiles[7]) and multiple spatially dependent ac-
tuators (see [8] for discussion) or even a spatiotemporally
dependent actuator that can control traveling solutions. Dis-
tributed systems are described by an infinite-dimensional set
of ordinary differential equations(ODE’s) and we need to
control the unstable modes without destabilizing other
(stable) modes. The instability of spatiotemporal patterns is
typically characterized by a small number of unstable modes,
and various approaches to that end were suggested. The
number of unstable modes, associated with the homogeneous
solution, however, increases with system size and with the
bifurcation parameter, and its stabilization is the subject of
the present article.

In the present article, we study the methodology for sta-
bilizing the homogeneoussx=u=0d solution of the RCD
one-dimensional system with oscillatory kinetics

Le xt + Vxz − xzz= fsx,ud, ut + Vuz − Duzz= gsx,ud,

s1ad

subject to the Danckwert’s boundary conditions

xzs0d = Vfxs0d − x0g, xzsLd = 0; s1bd

Duzs0d = Vfus0d − u0g, uzsLd = 0. s1cd

Here Le is the Lewis number,V, D are convective velocity
and diffusion coefficients. For most of this work, we employ
the following simple(oscillatory) polynomial kinetics

fsx,ud = − x3 + x + u, gsx,ud = − du− bx, s1dd

while in Sec. VI, we employ a more realistic cross-flow re-
actor in which a first-order activated reaction occurs. We
choose a model that incorporates convection since the inter-
play between absolute instability, due to autocatalytic kinet-
ics, and convective instability, which can be induced by con-
vection [9,10], makes the control problem especially
interesting.

This model (and similar ones) has been employed for
many years in simulating patterns in chemical systems. Most
mechanisms employ an activator-inhibitor interaction with a
sufficiently wide difference of their diffusive(i.e., D@1),
convective or capacitysLe@1d properties. Eq.(1a)–(1d) ac-
counts for two variables: the main autocatalytic variable(ac-
tivator, x) which undergoes reaction, advection, and diffu-
sion, and an inhibitor(u) which may be advected by the flow.
With V=0 and whenD is sufficiently large, this model forms
the extensively investigated Turing pattern-forming mecha-
nism [11,12]. With Le@1, it forms the differential capacity
pattern mechanism. Our group showed that stationary-
periodic or even-complex(or -chaotic solutions) can emerge
when the activator capacity is sufficiently largesLe@1d,
while both the inhibitor and activator flow at the same rate
[9]; the inhibitor diffusivity is not crucial for the establish-
ment of these patterns and it can be set to zerosD=0d and we
need to specify only the feed conditions,us0d. Other groups
have focused on different convective terms ofx and u and
termed it the differential flow induced chemical instability
[13]. Patterns in RCD systems have been a subject of inves-
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tigation in the past decade; a unifying view of the various
recently proposed versions of this mechanism is presented in
[9,10].

This model with convection and Le@1 was employed by
us as a learning model for a certain class of chemical reac-
tors, and specifically for modeling the cross-flow reactor in
which the main reactantsud is dispersed along the reactor,
rather than fed at one port as in traditional chemical reactors
[14]. The identity of the various variables is not crucial, but
in order to build a reasonable control strategy, we need to
consider the technological feasibility of the various control
schemes. In our interpretation,x is the fluid temperature
while u is the reactant concentration; other interpretations
that refer to the Belousov-Zhabotinski reaction were also
suggested.

To simplify the analysis to a single-variable presentation,
assume thatu is responding fast(i.e., Le@1) and its balance
is assumed to be in steady state. For the caseD=0, the origi-
nal system(1) is reduced to one-variable integro-differential
equation

Le xt + Vxz − xzz= − x3 + x + usxd, s2ad

usxsz,tdd = us0de−sd/Vdz −
b

V
E

0

z

e−sd/Vdsz−jdxsjddj, s2bd

xzs0d = Vfxs0d − x0g; xzsLd = 0. s2cd

While we have analyzed the control problem of fronts and
patterns, in systems similar to Eq.(1), the control of the
homogeneous state is a challenging problem since, upon
crossing the stability threshold of the system, self-organized
patterns of a certain characteristic wave number start to
emerge and the number of such modes increases dramatically
with changing the size of the system or with varying a bifur-
cation parameter. The stability threshold and these modes
(wave numbers), along with their group velocity, can be eas-
ily determined for an unbounded system. This can serve as
an asymptotic solution, but the behavior of a bounded system
is different due to the boundary conditions. Specifically, we
showed[10] that system(1) with Le@1 andD=0, admits
traveling wave solutions upon crossing the threshold of the
unbounded system, but in a bounded system withxoÞ0 there
may exist another(higher) threshold, which can be deter-
mined by linear analysis, so that stationary patterns emerge
sufficiently far from it. These result from the perturbations
introduced by the boundary conditionssxoÞ0d. In the vicin-
ity of this threshold we may still find traveling solutions, but
their domain of stability cannot be determined analytically.
We elaborate further on this structure later.

RCD systems may exhibit absolutely unstable or convec-
tively unstable states: The system is said to be convectively
unstable when perturbations grow in a frame moving with
the flow. The system is absolutely unstable when perturba-
tions grow in the physical frame. We propose to use formal
spatially-weighted feedback control to suppress patterns in
an absolutely or convectively unstable system and pinning
control for a convectively unstable system. We consider two
approaches for designing the feedback control laws. The first

one, which is based on analysis of unbounded systems, ap-
proximates the eigenfunctions from the wave numbers of the
unbounded system, and is more suitable for arbitrarily large
systems. The second approach accounts for the boundary
conditions and we use the expansion in terms of eigenfunc-
tions of the linear operator of the partial differantial equa-
tions (PDEs). These are analyzed in Secs. II and III. We
study the control design, using a truncatedN-term spectral
representation of the model, based on asymptotic stability
analysis, using the Gershgorin theorem, as well as with a
design based on Liapunov direct method.

We study two pinning strategies.(i) By controlling the
desired solutionsx=0d at several set points(i.e., pinning), the
actual system size to be studied is that between two such
pins. The system stability is assured by placing many(pref-
erably equally distant) pins. To determine these separations,
we should search for the largest stable bounded system with
Dirichlet boundary conditions.(ii ) Controlling the feed con-
ditions toxs0d=0 andus0d=0 should stabilize the homoge-
neous solution in a short systems in a domain of absolute
instability and in a long system in a domain of convective
instability: The perturbations in the system will be washed
out by the flow, if the velocity is sufficiently large. Within
the domain of absolute instability and in a long system, the
small perturbations of the feed conditions will be amplified.
This seems to be simplest control strategy in the convective
instability domain, if the system parameters are known ex-
actly. The strategy of pinning control is analyzed in Secs. IV
and V. Pinning control, in the form of periodically spaced
actuators that apply local perturbation, has been employed in
many studies of differential and difference equations(e.g.,
Auerbach[15] studied this approach in difference equation
that produce chaotic solutions in the absence of control.) The
actual implementation of such control in reacting systems is
technically quite difficult.

The methodology is developed for a system with learning
cubic kinetics and is tested on a more realistic cross-flow
reactor model in Sec. VI. Specifically, we introduce a feed-
back control of feed conditions, for systems with certain un-
certainty of the parameters.

Problem statement: Let us consider the control of the ho-
mogeneous state of the reduced model(2)

Le xt + Vxz − xzz= − x3 + x + usxd + l,
s3d

xzs0d = Vfxs0d − xog, xzsLd = 0,

fus0d=0g, where l=lsz,td is the control variable,uxou !1
and constant. In the absence of control, there exists a homo-
geneous solution(xs=us=0 when x0=0 or a solution that
approaches this value far from feed whenxoÞ0). This state
becomes unstable within a domain ofV and moving or sta-
tionary waves emerge. We will consider stabilizing control
action that can be presented in the general form

lsz,td = − go
n=1

h

vnstdcnszd, s4d

whereg is a gain coefficient,vnstd are independent manipu-
lated inputs, whilecnszd define the spatial distribution of the
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control. We consider two feedback control approaches with
cnszd that are either the exact or approximate eigenfunctions.
We also consider a strategy withcnszd=dsz−znd and vn

→`, which implies pinning the solution in some pointszn,
znP f0,Lg.

We realize that control of the form of Eq.(4) may be too
restrictive, as the open system may acquire traveling waves
solutions. In that case, we may try to control the system
using an actuator that travels with the wave at the same ve-
locity. We do not consider traveling wave control here for the
following reasons:(i) traveling waves appear in unbounded
or ring-shaped systems, and their domain of existence in
bounded systems diminishes with decreasing the system size
[10], (ii ) implementing such control is typically technically
difficult, and (iii ) the simple Eq.(4) control is typically suf-
ficient as the control itself stabilizes the front.

II. APPROXIMATE CONTROL FOR LONG SYSTEMS

In this section, we assume that the system lengthL is
sufficiently large to approximate functionscnszd by eigen-
functions of the unbounded system. In a bounded system, we
use a discrete set of these functions that satisfies the bound-
ary conditions with certain phase shift. Once these eigen-
functions are approximated for specifiedL and a bifurcation
parametersVd, the control is applied to suppress unstable
eigenfunctions in the form of

l = − go
s=s1

sl

kx̄sz,td,csszdlcsszd,s1 . 0, s5d

wherex̄=x−xs and k· ,csszdl denotes space-averaged.
We analyze first the bifurcation from the homogeneous

solutionssxs,usd that satisfyfsxsd+us=gsxs,usd=0. Lineariz-
ing Eq. (3) with l=0, we obtain an equation for the evolu-
tion of x̄

Le x̄t + Vx̄z − x̄zz= fxsxs,usdx̄ + usxYd. s6d

Expandingx̄sz,td as a superposition of harmonics and impos-
ing componentxksz,td of the formxksz,td=evkteikz with com-
plex vk=v=h+si yields the dispersion relation

Dsv,k,Vd = Lesh + sid + ikV + k2 − U ] f

] x
U

x=xs

+
b

sd + ikVd
.

s7d

The neutral curvesRev=h=0d is defined by the real and
imaginary parts of the equation above. Noting that
]f /]xux=xs

=1 sx0=0d, we find

− s Le Vk− V2k2 + dsk2 − 1d + b = 0,

s Le d + dVk+ Vksk2 − 1d = 0,

defining the neutral curve in theVskd plane as

V2 =
− bd − d2sk2 − 1d

k2sk2 − 1d
, s = −

kVsd + k2 − 1d
Le d

. s8d

Two critical points may be defined on the neutral curve:
its minimum sVm,kmd and the point of zero wave velocity

ss=0d sVo,kod. CrossingVm in an unbounded system corre-
sponds to an excitation of waves traveling with a finitekm
and constant speed[e.g., Fig. 3(a) before setting the control].
The critical wave numberskmd is determined fromdV/dk
=0: km

2 =1−a+Îa2−a, a=b /d, with a correspondingVm
2

=s−bd−d2qd / sq+q2d, whereq=km
2 −1, and group velocity

of sm/km [Eq. (8)]. Note that the neutral curve possesses
minimum if a.1 sb.dd. In bounded systems, however, the
boundary conditions may stabilize the front(i.e., to ensure
s=0) and crossingVo=Îsb−d2d / s1−dd will induce station-
ary waveswith a corresponding wave number ofko=Î1−d
[e.g., Fig. 3(c), before setting the control]. Note thatVo (ko)
exists ford,1. The type of sustained patterns depends an
the type of instability(absolute or convective), which can be
determined analytically for unbounded system and numeri-
cally for a bounded one(see discussion and bifurcation dia-
gram in [10]). The domain of unstable wave numbers
k−,k,k+ can be determined for anyV.Vm.

Example 1: Figure 1 presents the neutral stability curve
for system (3) with Le=100, b=0.2, andd=0.1667. The
corresponding critical wave numbers arekm=0.525 sVm

=0.245d andko=0.9129sVo=0.45d. For V=0.3, for example,
the wave numbers limiting the instability in an unbounded
system arek−=0.3, k+=0.77 (Fig. 1).

The simplest approach for control is to construct a regu-
lator that stabilizes the unstable mode: Just aboveV=Vm, the
threshold point for the appearance of waves with a finite
wave numberkm (and a wavelengthTm=2p /km) we need a
controllerl=lsz,td with one actuator that is proportional to
the unstable harmonic term with frequencykm. Let us con-
sider linearized PDE(6) with additive control

Le x̄t + Vx̄z − x̄zz= x̄ + usx̄d + l. s9d

For a sufficiently large length, which is divisible byTm
(L /Tm=p, integer), we approximate the deviationx̄sz,td by a

FIG. 1. A typical neutral curve[Eq. (8) for PDE’s (3) with l
=0 (Le=100,b=0.2,d=0.1667]. Open circle denotes the threshold
of stationary wavesVo,kod, full circle denotes the threshold of sta-
bility sVm,kmd.
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series of cosine eigenfunctions, using the wave numberkm
that corresponds to the unstable mode in an unbounded sys-
tem. With the one unstable harmonic termx1=cstdcosskmzd
the temporal factorcstd is calculated via Fourier series,cstd
=2spTmd−1e0

pTmx̄sz,tdcosskmzddz. Thus, the stabilizing control
at V=Vm becomesl=−gcstdcosskmzd. The gain coefficientg
is roughly evaluated asg. ,−km

2 +1 (see Appendix for de-
tails). This estimation is based on the approximate linearized
spectral representation of Eq.(9) subject to no-flux boundary
conditions.

For largerV.Vm, the range of unstable wave numbers is
k−,ks,k+. In a finite-dimension system, only a discrete set
from this range corresponds to the unstable harmonics. Our

purpose is to find these frequenciesk̂s. The general approach
lies in the approximation of the deviationx̄sz,td in the inter-
val f0,Lg by spectral methods. To this end, we use the gen-
eral cosine Fourier series

x̄sz,td = o
s=1

`

csstdcossk̂sz+ usd

with wave numbersk̂s and a phase shiftus that satisfy the
flux boundary conditions fxzs0d=Vxs0d ,xzsLd=0g. That
yields

k̂s tansk̂sLd = V, us = − k̂sL.

The analysis of the above sum reveals certain wave numbers

k̂s that lie in the rangefk−,k+g. These terms are stabilized for
a sufficiently large gaing by controller(5) with the series of

l space-dependent actuatorscsszd=cossk̂s+usd and the re-
lated global-weighted sensorskx̄sz,td ,csl, given by

l = − go
s=s1

sl

kx̄sz,td,cossk̂sz+ usdlcossk̂sz+ usd, s1 . 0.

s10d

Since k− decreases andk+ increases with increasingV
(Fig. 1), then the number of terms in sum(10) grows withV
(Fig. 2). Obviously, the number of unstable modessld grows
with increasing lengthL for assignedV.

For system lengths that are divisible by wavelength
sL=pTmd and whenV is in the vicinityVm (the phase shift is
us>0) we can simplify control (10) as follows:

l=−gos=s1

sl kx̄sz,td ,cossk̂szdlcossk̂szd, where the points

k̂s=skm/p, fk−,k+g, s.0 (see the Appendix for derivation
whenp=1).

Example 2: For the set of parameters described in
Example 1 and L=36, we can find Tm=2p /km>12,

p>L /Tm=3 and the set of wave numbersk̂1=0.175,

k̂2=0.35, k̂3=0.525, k̂4=0.7, k̂5=0.875,… . For V=0.3, we
find using Fig. 1 thatk−=0.3, k+=0.77. Thus, three wave

numbers,k̂2=0.35, k̂3=0.525, k̂4=0.7, are enough for the
above control. In the general case(i.e., L /Tm is not an inte-
ger) we need to calculate the control according to the general
Eq. (10).

A successful illustration of control(10), for stabilizing the
homogeneous solution for variousV, is shown in Fig. 3:
In these and subsequent simulations we use feed boundary
conditions Eq.(2c) with xo=0.01 or 0.1. This deviation from
steady state induces stationary or moving patterns in systems
of finite size. Let us note that for largeV this control does not
assure a small steady state error of the spatial profile(in the
convective unstable domain) [Fig. 3(d)]. Recall that this ap-
proach is approximate.

III. CONTROL BASED ON EIGENSTRUCTURE ANALYSIS
(SHORT SYSTEMS)

In this section, we derive the control law based on the
traditional eigenstructure analysis. The method is best suited
to system whereL andTm are comparable and the influence
of boundary conditions is significant.

To find the eigenfunctions, we use the spectral method to
expand x̄sz,td=x−xs=oiaistdwiszd, where the orthonormal
basis functionswiszd are the eigenfunctions of the problem:
wizz−Vwiz=−miwi, wzuz=0=Vwuz=0, wzuz=L=0. Using this spec-
tral method, we convert Eq.(9) with lstd from (4) into a set
of linear ODE’s

Le ȧj = s− m j + 1daj + o
i

qjiai − go
n=1

h

bjnvnstd, j = 1,2, . . .

s11d

(see Appendix for derivation). Rewriting (11) in the usual
vector-matrix form, we obtain

Le at = s− L + I + Qda + Bv, s12d

where a=astd=fajg is an infinite-dimensional vector
s j =1,2, . . .d, v is h vector, the matrixB=fbjng has infinite-
dimensional columns, and L=diagsm1,m2, . . .d,
I =diags1,1, . . .d, Q=fqjig, j , i =1,2, . . . are infinite-
dimensional matrices.

In the absence of controlsv=0d, the linear behavior of the
homogeneous solution is described by the leading eigenval-

FIG. 2. The effect ofV on the number of actuators required for
control (10) of a finite-sized systemsL=36d [Eq. (1) (D=0, g
=1.01); other parameters as in Fig. 1].
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ues of matrix(12), which are typically situated in the right
hand side of the complex plane for someV1

* ,V,V2
* where

V1
* denotes the stability threshold(which may be either con-

vective or absolute), while V2
* separates domains of absolute

and convective instabilities for bounded system. For ex-
ample,V1

* =0.26, V2
* =1.88 for the system described by the

parameters Le=100,L=36, b=0.2, d=0.1667.1 The value
V2

* →Vabs as L→` where Vabs is the absolute instability
threshold for unbounded PDE’s(1, D=0), (Vabs>1.9 was
determined analytically in[10] for the transition from abso-
lute to convective instability for Le=100,b=0.2, d
=0.1667).

The feedback control may be presented in terms of Eq.
(12) as

v = Kw = KHa, s13d

where theh vector w=Ha is the measured output of(12)
with the matrix H=fhnjg sn=1,2, . . . ,h ; j =1,2, . . .d. We
need to find theh3h matrix K of gain coefficients such that
closed-loop system(12) and (13) be asymptotically stable.

For designing the finite-dimensional control(13) we use
an N-terms truncated(finite- dimensional) approximation of
the dynamic matrixA=s−L+ I +Qd /Le. The truncation order
N is estimated from the convergence of the leading eigenval-
ues of matrixA. Furthermore, the actuator functionscnszd in
control (4) will be set to emulate eigenfunctions of the linear
operator of PDE(9) fcnszd=wnszdg and the inputsvnstd
=kxsz,td ,wn

al correspond to the spatially weighted-average
control, wherewn

a are the adjoint eigenfunctions of linear
operator of(9). The structure of matricesB and H is then
simplified toBT=H=fIh ,Og. Hence, despite the fact that the
finite-dimensional control(13) with høN influences only
the first diagonalN3N block of the matrixA, this control
ensures stability of whole infinite-dimensional system for a
sufficiently large truncation orderN.

For control design, we use the approach of Gershgorin
stability criterion to ensure that the truncated matrixA is
diagonally dominant with negative diagonal elements[16].
Because of the dissipative nature of parabolic PDE’s, only
severalm,N first rows of the matrixA do not satisfy this
stability criterion. Thus, the control2 v=−gIm Ha, møN with
a sufficiently large gaing shifts the firstm diagonal elements
aii of A to the left part of the complex plane, so that the
following inequalities hold:aii ,−o j=1,jÞi

N uaij u, i =1, . . . ,m.
As a result, the truncated matrixA (and hence the whole
infinite-dimensional matrixA) becomes stable.

This control is formed in the original system[Eq. (1), D
=0] by

lsz,td = − go
n=1

m

kx,wn
alwnszd. s14d

Approaching global stability

Control (14) ensures local stability of the homogeneous
solutionx=0 of the nonlinear system via Lyapunov’s linear-
ization method. Let us demonstrate that such control, with
recalculated gain coefficientg, ensures simultaneously the
asymptotic stability of this solution according Lyapunov’s
global stability method.

We study the solutionxsz,td of Eqs.(2), [us0d=0, x0=0]
in some neighborhood ofxs=0. Using the expansionxsz,td
=oi=1aistdwiszd, wherewiszd are eigenfunctions of linear op-
erator(2a), we obtain the spectral representation of nonlinear
Eq. (2a) as

Le ȧjstd = − m jajstd + o
i

qjiaistd + f jsad = Fjsad,

s15d

1For all calculations we use truncated system.

2Such control is known as diagonal control(decentralized feed-
back control) [17].

FIG. 3. Testing controller(10) by numerical
simulation of Eq.(1): The figure presents gray-
scale plots in thest ,zd plane of the response to a
constant perturbation at the boundary conditions
(xo=0.01; parameters as in Fig. 2). (a) V=0.3,
controller(10) is turned on att=250 changing the
traveling wave solution[the profile is presented
in (e)] into a stable homogeneous solution[the
profile in (f)]. (b) Same withV=0.5; (c) Same
with V=0.8: the uncontrolled system exhibits sta-
tionary waves(g); (d) Same withV=1.7 [the final
profile in (h)].
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j = 1,2, . . . ,

where a=fajstdg is the infinite-dimensional vectors j
=1,2, . . .d, while m j and qji were defined earlier[see Eq.
(11)]. The nonlinear functionsf jsad are calculated as follows:

uf jsad =E
0

L

s− x3 + xdux=oiaistdfiszdw j
aszddz, j = 1,2, . . . .

s16d

For stability analysis, we use anN-terms truncated approxi-
mation of Eq.(15), which is rewritten in the usual vector-
matrix form as follows:

Le at = s− L + Qda + fsad = Fsad, s17d

where a,fsad,Fsad are N-vectors,Q=fqjig is N3N matrix
and L=diagsm1,m2, . . . ,mNd. Let us calculate theN3N
Jacobian matrixFa for Eq. (17) in a certain neighborhoodV
of a=0 [the steady state solution of(17)] defined by in-
equalitiesuai u ,d, d.0, as

Fa =
1

Le
U ] F

] a
U

uaiu,d

= s− L + Q + IN + Gd/Le. s18d

In (18), the N3N matrix G=fGijg has elementsGij

=−3e0
Lson=1

N anwnd2wiw j
adzuuaiu,d, which are bounded in the re-

gion V. Matrix (18) is used for checking asymptotic stability
of the autonomous nonlinear system based on Krasovskii’s
theorem[18]: the steady-state solution at the origin of non-
linear system(17) with Fs0d=0 is asymptotically stable, ac-
cording to the direct Lyapunov’s method, if the matrixFa
+Fa

T is negative definite3 within some neighborhoodV (see
also contraction analysis[19,20] for nonlinear systems). The
Lyapunov function for this system isJsad=FTsadFsad.

Let us formulate the conditions that guarantee the nega-
tive definiteness of the matrixFa+Fa

T.
Assertion 1: If the matrixFa=ff ijg is a diagonal dominant

matrix with negative diagonal elements satisfying the in-
equalities

f ii , − o
j=1,jÞi

N

uf ij u and f ii , − o
j=1,jÞi

N

uf ji u, i = 1, . . . ,N;

s19d

then the matrixFa+Fa
T is a negative definite matrix.

Proof: If the matrix Fa has the above property, then the
symmetric matrixFa+Fa

T is a stable matrix according to the
Gershgorin theorem stability criteria[21]. Hence, it is the
negative definite matrix.

Therefore, we need to modify the diagonal elements of
the matrixFa to satisfy the conditions of Assertion 1 for the
matrix Fa+Fa

T. Let us introduce controllsz,td (14) into non-
linear PDE’s(2a). After lumping and truncating, we obtain
the closed-loop nonlinear ODE’s: Leat=s−L+Qda+ fsad

−diagsgIm,Oda that has the Jacobian matrix ofF̃a=Fa

−Le−1 diagsgIm,Od. Our purpose is to evaluate the gain co-

efficientg so that the matrixF̃a+F̃a
T be negative definite one.

Matrix Fa (18) presents the sum of the dynamics matrixA
=s−L+ I +Qd /Le of ODE’s (12) and matrixG/Le. Thus, the
problem is transformed to the problem of finding the
gain coefficient g, which ensures negative definiteness
to the N3N matrix sA+G/Led+sA+G/LedT

−2 Le−1 diagsgIm,Od.4 Such gaing is defined as

g ù minhgr,gcj, s20d

wheregr,gc ensure the inequalities:f ii −gr ,−o j=1,jÞi
N uf ij u, f ii

−gc,−o j=1,jÞi
N uf ji u, i =1, . . . ,m, wheref ij are elements of the

matrix Fa=A+G/Le. Since the elements of the matrixG, are
small bounded values in the regionV, then the above con-
ditions may be satisfied by a sufficiently large gainsgr, gc.
Thus, according to Krasovskii’s theorem, the appropriate
Lyapunov’s function of closed-loop system isJsad
=F̃TsadF̃sad.0.

Remark 1. The regionV in the neighborhood of the equi-

librium point a=O where the matrixF̃a+F̃a
T is negative defi-

nite defines the domain of attraction of the stable homoge-
neous solution. The number of termssmd and the value of
gain coefficientsgd in control (14) affects the size of the
domain of attraction of the closed-loop system: this domain
expands with increasingm andg.

To demonstrate these results, we apply control strategy
(14) to system(1) with L=10 sD=0,b=0.45,d=0.2d and
various V. The homogeneous solution of such a system is
unstable for 0.8øVø1.5. Analysis of the dynamics matrixA
of ODE’s (12) reveals that the first three rows do not satisfy
the Gershgorinstability criterion for V in the above range.
Analysis of the diagonal elements of the dynamics matrixA
shows that control(14) with m=2, g=0.48 is sufficient to
stabilize the small deviations of the homogeneous solution
for Vù0.8. Here,wiszd,e0.5Vzfcosssizd+0.5V sinssizd /sig,
w j

aszd=w jszde−Vz, i =1,2, ands1,s2ss1Þ0d are the smallest
roots of tanssiLd=Vsi / ssi

2−0.25V2d. The number of terms in
control (14) grows with increasing system length(eg.,m=5
for L=20, Vù0.8, other parametersD=0, b=0.45,d=0.2).
Control (14) effectively suppresses patterns in absolutely or
in convectively unstable domains(Fig. 4).

The number of terms in control(14) depends on the num-
ber of positive eigenvalues of matrix(12). That number
passes through a maximum with growingV in the range
fV1

* ,V2
*g, where V1

* (the stability threshold) and V2
* (the

absolute-convective threshold for bounded system) were de-
fined before (e.g., for L=20, Le=100,D=0, b=0.45, d
=0.2, we findV1

* =0.8, V2
* =1.5, and the maximal number of

terms occurs atV̂=1.2). For V.V2
* , matrix (12) has only

negative eigenvalues and control is not required for
asymptotic stability. However, the constant perturbation im-
posed at the boundary[condition (2c), with xo=0.01 in our3A necessary and sufficient condition for a symmetric matrix to be

negative definite is that its odd order principal minors are negative
and even order ones are positive or, equivalently, that all its eigen-
values be strictly negative.

4m is an upper bound on the number of first rows(columns) of A
that do not satisfy the Gershgorin stablility criterion.
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case] induces stationary patterns in the system because in
this range(convective instability) the stationary wave solu-
tion has a large attraction domain. Recall also that we search
for a control that will assure a sufficiently wide domain of
stability. Consequently, we find that the number of terms in

control does not decrease forV. V̂.
The above control is effective only for short systems. For

the case studied in Fig. 5, the weighted global control(14)
requires six actuators/sensors[Fig. 5(a)], compared with ap-
proximate controller(10), which requires three actuators

[Fig. 5(b)]. However, the former control ensures a smaller
steady-state error.

IV. PINNING CONTROL

By pinning control, we imply control that influences the
state variable at a finite number of discrete pointszi , f0,Lg.
To test it, we setxszi ,td=xsszid, wherexs is the homogeneous
solution. We need to determine the spacing between pinning
positions required to assure stability of the system. Consider
a control that pins the homogeneousx=0 solution at two
pointsz1 andz2, so that

xsz1d = 0, xsz2d = 0. s21d

The ability of this controller to stabilize the system can be
checked now by replacing the original problem(3) with the
following three problems:

Le xt + Vxz − xzz= − x3 + x + usxd, xzuz=0 = Vxuz=0, xuz1
= 0,

s22ad

Le xt + Vxz − xzz= − x3 + x + usxd, xuz1
= 0, xuz2

= 0,

s22bd

Le xt + Vxz − xzz= − x3 + x + usxd, xuz2
= 0, xzuz=L = 0,

s22cd

that describe the system near the left boundary, between two
intermediate pins and near the right boundary, respectively.

Linearization of(22a)–(22c) aroundx=0 and approxima-
tion of the linearized system by spectral methods leads to the
following linear systems in the three domains

Le at = Aa, Aij = s− m j + 1ddi j + kuswid,w j
al i, j = 1,2, . . . ,

s23d

where di j =1 when i = j and di j =0 otherwise, andwiszd
fw j

aszdg are the eigenfunctions(adjoint eigenfunctions) of the
linear operator(22) subject to corresponding boundary con-
ditions (Eqs.(22a)–(22c), while m j are the related eigenval-
ues. For these domains(22a)–(22c) these are, respectively,

m j = s j
2 + 0.25V2,

wiszd = Qie
0.5VzFcosssizd +

V

2si
sinssizdG , s24ad

2s j = − V tanss jz1d,

m j = s jpd2/sz2 − z1d2 + V2/4,

wiszd = Qie
Vsz−z1d/2 sinfipsz− z1d/sz2 − z1dg, s24bd

m j = s j
2 + 0.25V2,

wiszd = Qie
0.5Vzfsinssizd − tanssiz2dcosssizdg, s24cd

FIG. 4. Testing controller(14) by numerical simulation of Eq.
(1) [ D=0, Le=100,b=0.45, d=0.2, L=20]: The figure presents
gray-scale plots in thest ,zd plane of the response to constant per-
turbation at the boundary conditions.(a) V=0.8,xo=0.01, controller
(14) is turned on att=250, changing the traveling wave solution,
into a stable homogeneous solution,(b) Same withV=0.8,xo=0.1.
(c) Same withV=2.1, xo=0.01.

FIG. 5. Comparisons of controller design by exact(eigenstruc-
ture analysis, Eq.(14)) method [(a) m=6, s1=0.063, s2=0.206,
s3=0.286,s4=0.368,s5=0.452,s6=0.537] with approximate de-

sign [(b), controller (10) with 3 actuators:k̂2=0.45,k̂3=0.536,k̂4

=0.62]. The figure presents the temporal response atz=0.4L,0.6L
(upper row) and the stabilized spatial profile(second row) (V
=0.27,L=36, other parameters as in Fig. 1.xo=0.01).
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2s j = − V tanfs jsL − z2dg.

In (24), Qi =kwi ,wi
al−0.5. {The eigenfunctions for case(24a)

were derived in[22]}.
For boundary conditions(22b), we find the exact expres-

sion for kuswid ,w j
al as

kuswid,w j
al = −

2b

VL̃sṼ2 + i2p2/L̃2d
H i j p2

L̃2sṼ2 + j2p2/L̃2d
+ qJ ,

s25d

where L̃=z2−z1, Ṽ=d/V+V/2, q=0.5ṼL̃ for i = j , q
=2i2/ s j2− i2d for i Þ j (odd i + j), q=0 for i Þ j (eveni + j).

Linear stability analysis of Eq.(23), using eigenstructure
(24), enables us to calculate the maximal pin separations(z1,
L−z2. andz2−z1) that assure a homogeneous stable solution
for variousV (Fig. 6): All these separations tends to infinity
at V1

* ,V2
* (the stability and absolute-convective instability

thresholds). Thus, a single pin is sufficient for stabilizing
system of any length in a domain of convective instability
sV.V2

*d.
Let us note that pinning control requires control of the

state variable at certain points, which is typically technologi-
cally difficult. Moreover, unlike the feedback controllers
considered above(Secs. II and III), pinning control ensures
local stability for small perturbations of initial or boundary
conditions. However, pinning control may require fewer
terms than control based on spectral representation.

V. PINNING BOUNDARY CONDITIONS

The results of previous section suggest that pinning at the
feed boundary may be most effective in convective-unstable
systems. Consider a special type of pinning control in which
we control the feed conditions to obeyxs0d=0 at all times.
With this control, the original problem is replaced by the
right-boundary analysis above[Eq. (22c), z2=0] and linear
stability analysis(Fig. 6) and simulations[Fig. 7(a)] verify
that in a domain of absolute instability, this control stabilizes

the homogeneous solution in a short system, while in a do-
main of convective instabilitysV=2.1d this control is effec-
tive for a system of any size[Figs. 7(b) and 7(c)].

VI. APPLICATION TO THE CROSS-FLOW REACTOR

We try to apply the methodology above to control a ho-
mogeneous solution of the homogeneous model of a cross-
flow reactor in which the feed is evenly distributed along the
reactor(e.g., through a membrane) and the reactor is evenly
cooled (see[23] for a detailed description). By a homoge-
neous model, we imply that interphase gradients of tempera-
ture and concentration are absent. The model for a first-order
Arrhenius kinetics,r =Aue−E/RTCA, with mass supply and
heat removal along the reactor is written below in dimen-
sionless form using conventional notation for variables and
parameters

Le
] y

] t
+

] y

] j
−

1

Pe

]2y

] j2 = B Das1 − xdusyd + bTsY − yd + l

= f1sx,yd + l, s26ad

] x

] t
+

] x

] j
= Das1 − xdusyd + bCsX − xd = f2sx,yd,

usyd = expS gy

g + y
D , s26bd

wherex andy, respectively, are dimensionless concentration
and temperature, Pe and Da are Peclet and Damkohler num-
bers, whileX andY denote wall concentration and tempera-
ture, respectively,l is the control action. We assume negli-
gible dispersion of mass and typically the bed heat capacity
is large sLe@1d and conductivity is small, Pe@1. The
Danckwert’s boundary conditions are typically imposed on
the model:

yjuj=0 = Pefyuj=0 − ying; yjuj=L = 0; xuj=0 = xin.

s26cd

In the absence of control, the right-hand side of Eq.(26)
ff1sxs,ysd= f2sxs,ysd=0g may admit a unique or multiple so-
lutions for a certain range of wall transport parametersbC

FIG. 6. Analysis of stability domains of pinning control: Figure
shows the effect ofV on pin separation on the left(z1, dashed line),
middle (z2−z1, solid line), and right(L−z2, dashed-dotted line) do-
mains. The stability was determined from Eqs.(23) (parameters are
as in Fig. 1).

FIG. 7. Testing of pinning boundary control[Eq. (1), D=0] in a
short systemsL=6d with V=0.3 (a) and V=1.7 (b) and in a long
systemsL=36,V=2.1d (c). Other parameters as in Fig. 1; The figure
presents gray-scale plots in thest ,zd plane of the response to con-
stant perturbation at the boundary conditionssxo=0.01d, and pin-
ning control[i.e., xs0d=0] is turned on att=250.
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and bT. We limit this analysis to the case of a unique un-
stable solution that leads to stationary or moving patterns.
The neutral curve that describes the stability boundary rela-
tion between Peskd and wave numberskd was derived in[23],
and we use here the analysis and results presented there.

For the case simulated in Fig. 8, the homogeneous steady-
state value isys=3.5334,xs=0.8724. The system is convec-
tively unstable[23] and fixingyin>ys=3.533,xin=xs assures
a homogeneous solution[Fig. 8(d)]. Small perturbations
from these values lead to stationary patterns[Fig. 8(b), the
uncontrolled case]. We attempt to apply control in that case.
As we show, control can be useful for small deviations but
will not be useful for large ones.

The simplest approach to control is to capitalize on the
convective instability by pinning the boundary at the value of
the homogeneous solution(Sec. V). In the general case the
homogeneous solution is not known exactly, and the solution
is very sensitive to this value. We can estimate it from inte-
grating the variablesx and y over a certain domain in the
reactorsj* ,j,Ld, as

yinstd =
1

L − j*
E

j*

L

ysj,tddj; xinstd =
1

L − j*
E

j*

L

xsj,tddj.

s27d

Obviously,yin→ys (similarly for x) for small amplitude spa-
tially harmonic patterns and whenL−j* is an integer mul-
tiple of the wavelength of the solution. We have attempted
this approach numerically(Fig. 9) and it worked well with
xin=xs and for small deviations from the critical point[Pe
=15, Fig. 9(a)], but with larger deviations[Pe=25, Fig. 9(b)]
it converted the stationary patterns into moving waves. This
may be due to residual error of integrating a fractional num-
ber of wavelengths and can be corrected by integration in
time as well. A formal analysis of the stability of this ap-
proach will be conducted elsewhere.

We test now the traditional space-dependent actuator. To
choose the methodology of control, we approximate the
present problem in the form similar to Eq.(2). For Le@1,
we can ignore]j /]t terms. Defining

f = = sY − yd − BsX − xd,

we find from Eqs.(26) the ODE

FIG. 8. (Color online) Simulation and control of the cross-flow
reactor of lengthL=5.4 [Eq. (26), Le=100, Pe=15,B=16.2, bT

=4, bc=1, Da=0.2, X=0, Y=0, g=104]. (a) Response of the
closed-loop system with control(10) to constant small perturbation
at the boundary conditions(yin=3.53, xin=0.872 compared with
steady-state solutionys=3.5334,xs=0.8724). The figure presents
gray-scale plots in thest ,jd plane. Controller(10) using four actua-
tors is turned on att=250, changing the uncontrolled stationary
wave solution(b) into a homogeneous solution(c). Pinning the inlet
conditionsyin>ys=3.533,xin=xs assures the homogeneous solution
exactly (d).

FIG. 9. Testing of pinning boundary control with uncertainty of
parameters by settingyin=L−1e0

Lysj ,tddt, xin=xs=0.872 44 in sys-
tem (26) of length L=5.4 and Pe=15(a) and Pe=25(b); other
parameters as in Fig. 8. Pinning control is turned on att=250,
changing the stationary pattern solution(a) into a stable homoge-
neous one for Pe=15 or into moving waves(b) for Pe=25. For
t,250, yin=3.5 (compared withys=3.5334). Figures(a1,b1) pre-
sents gray-scale plots while(a2,b2) and(a3,b3) present spatial pro-
files before and after control.
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fj + bcf = − Pe−1yjj − sbc − bTdsy − Yd

with feed condition fs0d=fuj=0=Y−ys0d−BfX−xs0dg,
whereys0d=yuj=0, xs0d=xuj=0=xin. After some rearrangement
(similar to one used in[24]), we obtain the following non-
linear PDE with respect toy, as

Le
] y

] t
+

] y

] j
−

1

Pe

]2y

] j2 = Fsyd + usyd − Da Csjdusyd,

s28ad

Fsyd = DafBs1 + Xd − s1 + bdsY + ydgusyd − bTsy − Yd,

b = bT − bC, s28bd

usyd = − Da usydbFE
o

j

er−jydr − yG , s28cd

Csjd = e−bCjhY − ys0d + Bfxs0d − Xgj + fys0d − bYge−j.

s28dd

We can approximately convert Eq.(28) to the model studied
here if we setCsjd=0, either becausexs0d=0, ys0d=0
and/or since the effect of initial conditions decayedsj@1d,
and approximate the exponential termusyd=expfgy/ s1
+gydg as s1+by2d. The structure of Eq.(28a) is similar to
that of Eq. (2) after replacing the space coordinate byz
=jÎPe. Thus, we may use the control actionl=lsj ,td of the
general form(4) for stabilization of the small deviations
from the homogeneous stateys of Eq. (26).

We now apply the methodology of Sec. II to demonstrate
reasonable results for control of short system with small per-
turbations of feed conditions from the homogeneous solu-
tion. Here, control(10) is constructed using the wave num-

bers k̂s (and phase shiftsus) that satisfy the flux boundary
conditions and lie in the domain of unstable wave numbers.

That domain for a bounded system(26), fk̃−, k̃+g, may differ
from that calculated from neutral curve for unbounded sys-
tem (26), fk−,k+g. For example, for the set of parameters in
Fig. 8, we calculated from the neutral curve{Fig. 1(a), [23]}
the following critical points: km=6.68 sPem=14.976d, ko

=5.93 sPeo=15.42d; for Pe=15, the wave numbersk−=6.4,
k+=6.95 limit the instability domain in an unbounded sys-
tem. Following the approach in Sec. II, we should use two
actuator/sensors with wave numbers 6.61 and 6.93 that em-
ploy eigenfunctions that are within this unstable domain. Nu-
merical simulations of Eq.(26) revealed that this may not be
sufficient. We added two actuators with adjacent wave num-
bers s5.46,6.03d and found that control(10) with four

actuator/sensors(k̂1=5.46, k̂2=6.03, k̂3=6.61, k̂4=6.93) is
sufficient for stabilization of the homogeneous solution of
system of lengthL=5.4 (Fig. 8).

This analysis suggest that the approaches presented here
are very limited in their applications for real systems. We
should empahsize again that control of convectively unstable
systems is different than that traditionally applied to
distributed-parameters systems and should capitalize on pin-
ning the feed conditions.

VII. CONCLUDING REMARKS

We study the problem of stabilization of a homogeneous
solution in two-variable reaction-convection-diffusion sys-
tem with oscillatory kinetics. We choose a model that incor-
porates convection since the interplay between absolute in-
stability due to autocatalytic kinetics and convective stability,
that can be induced by convection, makes the control prob-
lem especially interesting. While spatially weighted feedback
control can suppress patterns in absolutely or convectively
unstable systems, the number of required actuators increases
dramatically with system size and with the distance from
bifurcation point. Patterns can also be suppressed by pinning
the desired solution at several set points of the actual system
size. A control based on pinning of the boundary condition is
most simple and effective in convectively unstable systems,
if the system parameters are known exactly. For systems with
a certain uncertainty of the parameters, we introduce a feed-
back control of feed conditions. Implementation of these ap-
proaches in a more realistic model of a cross-flow reactor
highlights the difficulties associated with controlling the ho-
mogeneous system in distributed systems.

While we have considered here only boundary conditions
that are constant in time, we should be aware that this is a
particular case of the problem with time-dependent periodic
or noisy boundary condition. That may introduce families of
traveling wave solutions, which may interact to form spa-
tially and periodically chaotic solutions. This issue will be
addressed in future presentations.
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APPENDIX

1. Derivation of control at V=Vm

For simplification, we consider the caseL=Tm. Let us
expandx̄sz,td on intervalf0,Lg in cosine Fourier series

x̄sz,td > 0.5ÎLo
n=1

`

cnstdwnszd, sA1d

where w1=1/ÎTm and wnszd=Î2/Tmcosf2psn−1dz/Tmg, n
=2,3, . . . .Members of the series above are orthonormal in
the intervalf0,Lg and we approximate the linearized system
(9) with l=0 by a set of ODE’s

Le ċ1 = c1 − sb/Vdo
i=1

`

q1ici , sA2d

Le ċn = h− fsn − 1dkmg2 + 1jcn + Vo
i=1

`

pnici

− sb/Vdo
i=1

`

qnici, n = 2,3, . . . , sA3d

where elementsqni=kusx̄d ,wnszdl and pni=kVx̄z,wnszdl are
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calculated by integrating the termusx̄d [Eq. (2b), us0d=0]
andVx̄z with weight functions. By exact integration, we ob-
tain the coefficients in Eq.(A2) as

q11 = ufue−L/u/L − su/L − 1dg, u = 2V/d,

q1i = −
4

L
F e−L/u

sd/Vd2 + si − 1d2km
2 G, i = 2,4, . . . , q1i = 0,

i = 3,5, . . . , sA4d

which for L@1 becomesq11>u, q1i>0, i .1. Thus, the vari-
able c1std is stable for anyV and b,d, d,1. This is also
evident from the neutral curve.

Stability analysis of the structure of Eqs.(A3) with pa-
rameters Le=100,b=0.2, d=0.1667(andkm=0.525) shows
that the variablescnstdsn.2d are stable for anyV, while the
variablec2std is unstable forV.Vm. Sincew2szd,cosskmzd,
then the system may be stabilized by the control of the sim-
plest form l=−gkx̄,cosskmzdlcosskmzd, with a sufficiently
large gaing. A rough estimate of gainsg.−km

2 +1d follows
from Eq. (A3) sn=2d.

2. Derivation of Eq. (11)

Substitutingx̄sz,tds=oiaistdwiszd with lstd from (4) and
integrating with a weight eigenfunctionsw j

aszd we convert
Eq. (9) into a set of linear ODE’s

Le ȧj = s− m j + 1daj + o
i

qjiai − gE
0

L

o
n=1

h

vnstdcnszdf j
aszddz,

sA5d

where m j =si
2+0.25V2, wiszd, and w j

aszd are eigenvalues,
eigenfunctions, and adjoint eigenfunctions of linear operator
(3) with flux boundary conditions, ands j .0, i =1,2, . . .sat-
isfy the transcendental equation(see[22] for concrete formu-
las), qji =kuswidw j

al, where uswid satisfies Eq.(2b) with x
=wi andus0d=0. Let us evaluate the last term in(A5). Since

E
0

L

o
n=1

h

vnstdcnszdf j
aszddz= o

n=1

h

vnstdE
0

L

cnszdf j
aszddz,

then denoting

bjn =E
0

L

cnszdf j
aszddz, sA6d

we can finally rewrite(A5) as Eq.(11).
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